Sparse Gaussian noisy independent component analysis

Frosti Palsson, Magnus O. Ulfarsson, Johannes R. Sveinsson

Rannsóknarafurð: Kafli í bók/skýrslu/ráðstefnuritiRáðstefnuframlagritrýni

2 Tilvitnanir (Scopus)

Útdráttur

There are two main approaches to independent component analysis (ICA); maximization of non-Gaussianity of the sources and the exploitation of temporal correlation in Gaussian sources. In this paper, we present a novel sparse noisy ICA model where we have introduced temporal correlation in the sources, described by a first order auto regressive (AR(1)) process. The correlation structure of the sources eliminates the rotational invariance of the estimates, enabling their separation. Using simulated data, we demonstrate both source separation and denoising, where we compare our results to a sparse PCA method and the fastICA method. Additionally, we apply the method on a real hyperspectral dataset.

Upprunalegt tungumálEnska
Titill gistiútgáfu2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
ÚtgefandiInstitute of Electrical and Electronics Engineers Inc.
Síður4224-4228
Síðufjöldi5
ISBN-númer (prentað)9781479928927
DOI
ÚtgáfustaðaÚtgefið - 2014
Viðburður2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Ítalía
Tímalengd: 4 maí 20149 maí 2014

Ritröð

NafnICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN-númer (prentað)1520-6149

Ráðstefna

Ráðstefna2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Land/YfirráðasvæðiÍtalía
Borg/bærFlorence
Tímabil4/05/149/05/14

Fingerprint

Sökktu þér í rannsóknarefni „Sparse Gaussian noisy independent component analysis“. Saman myndar þetta einstakt fingrafar.

Vitna í þetta