Genome-scale analysis of Methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance

Donghui Choe, Richard Szubin, Samira Dahesh, Suhyung Cho, Victor Nizet, Bernhard Palsson, Byung Kwan Cho

Rannsóknarafurð: Framlag til fræðitímaritsGreinritrýni

15 Tilvitnanir (Scopus)

Útdráttur

Staphylococcus aureus infection is a rising public health care threat. S. aureus is believed to have elaborate regulatory networks that orchestrate its virulence. Despite its importance, the systematic understanding of the transcriptional landscape of S. aureus is limited. Here, we describe the primary transcriptome landscape of an epidemic USA300 isolate of community-acquired methicillin-resistant S. aureus. We experimentally determined 1,861 transcription start sites with their principal promoter elements, including well-conserved -35 and -10 elements and weakly conserved -16 element and 5′ untranslated regions containing AG-rich Shine-Dalgarno sequence. In addition, we identified 225 genes whose transcription was initiated from multiple transcription start sites, suggesting potential regulatory functions at transcription level. Along with the transcription unit architecture derived by integrating the primary transcriptome analysis with operon prediction, the measurement of differential gene expression revealed the regulatory framework of the virulence regulator Agr, the SarA-family transcriptional regulators, and β-lactam resistance regulators. Interestingly, we observed a complex interplay between virulence regulation, β-lactam resistance, and metabolism, suggesting a possible tradeoff between pathogenesis and drug resistance in the USA300 strain. Our results provide platform resource for the location of transcription initiation and an in-depth understanding of transcriptional regulation of pathogenesis, virulence, and antibiotic resistance in S. aureus.

Upprunalegt tungumálEnska
Númer greinar2215
FræðitímaritScientific Reports
Bindi8
Númer tölublaðs1
DOI
ÚtgáfustaðaÚtgefið - 1 des. 2018

Athugasemd

Funding Information:
This work was funded by National Institutes of Health/National Institute of General Medical Sciences Grant [1R01GM098105, 1-U01-AI124316-01, and 5-U54-HD071600-05], and the Basic Science Research Program [2015R1A2A2A01008006 to B.-K.C., 2015R1C1A2A01053505 to S.C.] through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MISP).

Publisher Copyright:
© 2018 The Author(s).

Fingerprint

Sökktu þér í rannsóknarefni „Genome-scale analysis of Methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance“. Saman myndar þetta einstakt fingrafar.

Vitna í þetta