A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory

Juan Nogales, Bernhard Palsson, Ines Thiele

Rannsóknarafurð: Framlag til fræðitímaritsGreinritrýni

169 Tilvitnanir (Scopus)

Útdráttur

Background: Pseudomonas putida is the best studied pollutant degradative bacteria and is harnessed by industrial biotechnology to synthesize fine chemicals. Since the publication of P. putida KT2440's genome, some in silico analyses of its metabolic and biotechnology capacities have been published. However, global understanding of the capabilities of P. putida KT2440 requires the construction of a metabolic model that enables the integration of classical experimental data along with genomic and high-throughput data. The constraint-based reconstruction and analysis (COBRA) approach has been successfully used to build and analyze in silico genome-scale metabolic reconstructions. Results: We present a genome-scale reconstruction of P. putida KT2440's metabolism, iJN746, which was constructed based on genomic, biochemical, and physiological information. This manually-curated reconstruction accounts for 746 genes, 950 reactions, and 911 metabolites. iJN746 captures biotechnologically relevant pathways, including polyhydroxyalkanoate synthesis and catabolic pathways of aromatic compounds (e.g., toluene, benzoate, phenylacetate, nicotinate), not described in other metabolic reconstructions or biochemical databases. The predictive potential of iJN746 was validated using experimental data including growth performance and gene deletion studies. Furthermore, in silico growth on toluene was found to be oxygen-limited, suggesting the existence of oxygen-efficient pathways not yet annotated in P. putida's genome. Moreover, we evaluated the production efficiency of polyhydroxyalkanoates from various carbon sources and found fatty acids as the most prominent candidates, as expected. Conclusion: Here we presented the first genome-scale reconstruction of P. putida, a biotechnologically interesting all-surrounder. Taken together, this work illustrates the utility of iJN746 as i) a knowledge-base, ii) a discovery tool, and iii) an engineering platform to explore P. putida's potential in bioremediation and bioplastic production.

Upprunalegt tungumálEnska
Númer greinar79
FræðitímaritBMC Systems Biology
Bindi2
DOI
ÚtgáfustaðaÚtgefið - 16 sep. 2008

Athugasemd

Funding Information:
We thank J.R. Luque-Ortega for help in the oxygen uptake experiments. We thank M. Abrahams, M. Mo, and S. Burning for critical reading of the manuscript. JN is grateful to T. Conrad for your help during the San Diego stay and E. Díaz and M.A. Prieto for their valuable help and suggestion during the metabolic reconstruction. JN is the recipients of an I3P predoctoral Fellowship from the Consejo Superior de Investigaciones Científicas (CSIC) and JN stay in San Diego was supported by a short term I3P fellowship.

Fingerprint

Sökktu þér í rannsóknarefni „A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory“. Saman myndar þetta einstakt fingrafar.

Vitna í þetta