Thermal diffusion processes in metal-tip-surface interactions: Contact formation and adatom mobility

Mads R. Sørensen, Karsten W. Jacobsen, Hannes Jónsson

Research output: Contribution to journalArticlepeer-review

77 Citations (Scopus)

Abstract

We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3–5 Å from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip are reduced. This can cause adatoms to follow the tip as it is moved over the surface.

Original languageEnglish
Pages (from-to)5067-5070
Number of pages4
JournalPhysical Review Letters
Volume77
Issue number25
DOIs
Publication statusPublished - 1996

Fingerprint

Dive into the research topics of 'Thermal diffusion processes in metal-tip-surface interactions: Contact formation and adatom mobility'. Together they form a unique fingerprint.

Cite this