Abstract
Reactive magnetron sputtering is essential in many industrial processes where it is applied to deposit compound films or coatings. Reactive sputtering is attractive because a range of compounds can be prepared from a low-cost metal target by addition of an appropriate reactive gas to the noble working gas. To understand the reactive HiPIMS process, we here start with an overview of reactive sputtering and an introduction to process hysteresis in dcMS, which is followed by an overview of fundamental surface and plasma processes focusing on the behavior specific for reactive sputtering. In the second half of the chapter, HiPIMS-specific aspects of reactive sputtering are reviewed. This includes hysteresis in reactive HiPIMS operation, which is the subject of much debate, as some report reduction or elimination of the hysteresis effect, while others claim that a feedback control is essential. To provide a deeper insight into the process physics, a combination of experimental and computational model results are presented and discussed throughout the text.
Original language | English |
---|---|
Title of host publication | High Power Impulse Magnetron Sputtering |
Subtitle of host publication | Fundamentals, Technologies, Challenges and Applications |
Publisher | Elsevier |
Pages | 223-263 |
Number of pages | 41 |
ISBN (Electronic) | 9780128124543 |
ISBN (Print) | 9780128124550 |
DOIs | |
Publication status | Published - 1 Jan 2019 |
Bibliographical note
Publisher Copyright:© 2020 Elsevier Inc. All rights reserved.
Other keywords
- Compound formation
- Hysteresis
- Plasma chemistry
- Reactive gas
- Reactive magnetron sputtering