Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene

C. E. Whittaker*, T. Dowling, A. V. Nalitov, A. V. Yulin, B. Royall, E. Clarke, M. S. Skolnick, I. A. Shelykh, D. N. Krizhanovskii

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The concept of gauge fields plays a significant role in many areas of physics, from particle physics and cosmology to condensed-matter systems, where gauge potentials are a natural consequence of electromagnetic fields acting on charged particles and are of central importance in topological states of matter1. Here, we report on the experimental realization of a synthetic non-Abelian gauge field for photons2 in a honeycomb microcavity lattice3. We show that the effective magnetic field associated with transverse electric–transverse magnetic splitting has the symmetry of the Dresselhaus spin–orbit interaction around Dirac points in the dispersion, and can be regarded as an SU(2) gauge field4. The symmetry of the field is revealed in the optical spin Hall effect, where, under resonant excitation of the Dirac points, precession of the photon pseudospin around the field direction leads to the formation of two spin domains. Furthermore, we observe that the Dresselhaus-type field changes its sign in the same Dirac valley on switching from s to p bands, in good agreement with the tight-binding modelling. Our work demonstrating a non-Abelian gauge field for light on the microscale paves the way towards manipulation of photons via spin on a chip.

Original languageEnglish
Pages (from-to)193-196
Number of pages4
JournalNature Photonics
Volume15
Issue number3
DOIs
Publication statusPublished - Mar 2021

Bibliographical note

Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene'. Together they form a unique fingerprint.

Cite this