Numerical modeling of the thermal structure and evolution of hydrothermal systems

Samuel Scott*, Philipp Weis, Thomas Driesner

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review


This study applies the fluid flow and heat transport code CSMP++ to simulate the cooling of intrusions and the sub-surface structure and evolution of hydrothermal systems. These 2D simulations are focused on characterizing the influence of important factors such as magma chamber depth as well as system-scale permeability. Preliminary results show that the depth of the intrusion plays an important role in system evolution. If the roof of the intrusion is near 2-2.5 km depth, extensive two-phase zones develop above the intrusion and are able to transport heat much more rapidly than for liquid-dominated upflow zones associated with deeper intrusions. Higher host rock permeability results in lower upflow temperatures and thus two-phase zones are more short-lived and confined to shallower depths; however, since the total fluid flux around the intrusion is much greater, higher permeability causes them to cool more rapidly and develop more numerous, narrower upflow zones than develop at lower permeability. In general the thermal and hydraulic structure and system lifetime can vary greatly in response to ‘small’ changes in heat source depth and system-scale permeability.

Original languageEnglish
Pages (from-to)223-226
Number of pages4
JournalInternational Conference on Computational Methods for Thermal Problems
Issue number116318
Publication statusPublished - 2014
EventInternational Conference on Computational Methods for Thermal Problems, ThermaComp 2014 - Lake Bled, Slovenia
Duration: 2 Jun 20144 Jun 2014

Bibliographical note

Publisher Copyright:
© 2014, Dalian University of Technology. All rights reserved.

Other keywords

  • Finite element method
  • Geothermal systems
  • High enthalpy geothermal resources
  • Natural Convection


Dive into the research topics of 'Numerical modeling of the thermal structure and evolution of hydrothermal systems'. Together they form a unique fingerprint.

Cite this