TY - JOUR
T1 - Interactions between lava and snow/ice during the 2010 Fimmvörðuháls eruption, South-Central Iceland
AU - Edwards, B.
AU - Magnússon, E.
AU - Thordarson, T.
AU - Gumundsson, M. T.
AU - Höskuldsson, A.
AU - Oddsson, B.
AU - Haklar, J.
PY - 2012/4/1
Y1 - 2012/4/1
N2 - The 20 March-12 April basaltic effusive eruption at Fimmvruhls, southern Iceland, was an important opportunity to directly observe interactions between lava and snow/ice. The eruption site has local perennial snowfields and snow covered ice, and at the time of eruption it was covered with an additional ∼1-3 m of seasonal snow. Syn-eruption observations of interactions between lava and snow/ice are grouped into four categories: (1) lava advancing directly on top of snow, (2) lava advancing on top of tephra-covered snow, (3) snow/ice melting at lava flow margins, and (4) lava flowing beneath snow. Based on syn- and post-eruption observations in 2010/11, we conclude that the features seen in the lava flow field show only limited and localized evidence for the influence of snow/ice presence during the eruption. Estimated melting rates from radiant and conductive heating at the flow fronts are too slow (on the order of 5 m/hr) to allow for complete melting of snow/ice ahead of the advancing lava flows, at least during periods of observed rapid lava advance rates (15-55 m/hr). Thus we conclude that during those periods, which largely established the aerial extent of the lava flow field, lava advanced on top of snow; that this likely was the predominant mode of lava emplacement for much of the eruption is supported by many syn-eruption field observations. Examination of the lava flows subsequent to the eruption has so far only found subtle evidence for interactions between lava and snow/ice; for example, locally lava flows have fractured and are collapsing, or have developed marginal rubble aprons from melting of snow banks that were partly covered by lava flow margins.
AB - The 20 March-12 April basaltic effusive eruption at Fimmvruhls, southern Iceland, was an important opportunity to directly observe interactions between lava and snow/ice. The eruption site has local perennial snowfields and snow covered ice, and at the time of eruption it was covered with an additional ∼1-3 m of seasonal snow. Syn-eruption observations of interactions between lava and snow/ice are grouped into four categories: (1) lava advancing directly on top of snow, (2) lava advancing on top of tephra-covered snow, (3) snow/ice melting at lava flow margins, and (4) lava flowing beneath snow. Based on syn- and post-eruption observations in 2010/11, we conclude that the features seen in the lava flow field show only limited and localized evidence for the influence of snow/ice presence during the eruption. Estimated melting rates from radiant and conductive heating at the flow fronts are too slow (on the order of 5 m/hr) to allow for complete melting of snow/ice ahead of the advancing lava flows, at least during periods of observed rapid lava advance rates (15-55 m/hr). Thus we conclude that during those periods, which largely established the aerial extent of the lava flow field, lava advanced on top of snow; that this likely was the predominant mode of lava emplacement for much of the eruption is supported by many syn-eruption field observations. Examination of the lava flows subsequent to the eruption has so far only found subtle evidence for interactions between lava and snow/ice; for example, locally lava flows have fractured and are collapsing, or have developed marginal rubble aprons from melting of snow banks that were partly covered by lava flow margins.
UR - http://www.scopus.com/inward/record.url?scp=84859702094&partnerID=8YFLogxK
U2 - 10.1029/2011JB008985
DO - 10.1029/2011JB008985
M3 - Article
AN - SCOPUS:84859702094
SN - 2169-9313
VL - 117
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - 4
M1 - B04302
ER -