In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides

G Bergsson, J Arnfinnsson, S M Karlsson, O Steingrimsson, H Thormar

Research output: Contribution to journalArticlepeer-review


The antichlamydial effects of several fatty acids and monoglycerides were studied by incubating Chlamydia trachomatis bacteria with equal volumes of lipid solutions for 10 min and measuring the reduction in infectivity titer compared with that in a control solution without lipid. Caprylic acid (8:0), monocaprylin (8:0), monolaurin (12:0), myristic acid (14:0), palmitoleic acid (16:1), monopalmitolein (16:1), oleic acid (18:1), and monoolein (18:1) at concentrations of 20 mM (final concentration, 10 mM) had negligible effects on C. trachomatis. In contrast, lauric acid (12:0), capric acid (10:0), and monocaprin (10:0) caused a greater than 10,000-fold (>4-log10) reduction in the infectivity titer. When the fatty acids and monoglycerides were further compared at lower concentrations and with shorter exposure times, lauric acid was more active than capric acid and monocaprin was the most active, causing a greater than 100, 000-fold (>5-log10) inactivation of C. trachomatis at a concentration of 5 mM for 5 min. The high levels of activity of capric and lauric acids and particularly that of monocaprin are notable and suggest that these lipids have specific antichlamydial effects. The mode of action of monocaprin was further studied by removal of the lipid by centrifugation before inoculation of Chlamydia onto host cells and by electron microscopy. The results indicate that the bacteria are killed by the lipid, possibly by disrupting the membrane(s) of the elementary bodies. A 50% effective concentration of 30 microgram/ml was found by incubation of Chlamydia with monocaprin for 2 h. The rapid inactivation of large numbers of C. trachomatis organisms by monocaprin suggests that it may be useful as a microbicidal agent for the prevention of the sexual transmission of C. trachomatis.
Original languageEnglish
JournalAntimicrobial Agents and Chemotherapy
Publication statusPublished - 1 Sept 1998

Other keywords

  • Cells, Cultured
  • Chlamydia trachomatis
  • Fatty Acids
  • Glycerides
  • Microbial Sensitivity Tests
  • Microscopy, Electron


Dive into the research topics of 'In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides'. Together they form a unique fingerprint.

Cite this