TY - JOUR
T1 - Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow
AU - Gudmundsson, Magnús T.
AU - Jónsdóttir, Kristín
AU - Hooper, Andrew
AU - Holohan, Eoghan P.
AU - Halldórsson, Sæmundur A.
AU - Ófeigsson, Benedikt G.
AU - Cesca, Simone
AU - Vogfjörd, Kristín S.
AU - Sigmundsson, Freysteinn
AU - Högnadóttir, Thórdís
AU - Einarsson, Páll
AU - Sigmarsson, Olgeir
AU - Jarosch, Alexander H.
AU - Jónasson, Kristján
AU - Magnússon, Eyjólfur
AU - Hreinsdóttir, Sigrún
AU - Bagnardi, Marco
AU - Parks, Michelle M.
AU - Hjörleifsdóttir, Vala
AU - Pálsson, Finnur
AU - Walter, Thomas R.
AU - Schöpfer, Martin P.J.
AU - Heimann, Sebastian
AU - Reynolds, Hannah I.
AU - Dumont, Stéphanie
AU - Bali, Eniko
AU - Gudfinnsson, Gudmundur H.
AU - Dahm, Torsten
AU - Roberts, Matthew J.
AU - Hensch, Martin
AU - Belart, Joaquín M.C.
AU - Spaans, Karsten
AU - Jakobsson, Sigurdur
AU - Gudmundsson, Gunnar B.
AU - Fridriksdóttir, Hildur M.
AU - Drouin, Vincent
AU - Dürig, Tobias
AU - Adalgeirsdóttir, Gudfinna
AU - Riishuus, Morten S.
AU - Pedersen, Gro B.M.
AU - Van Boeckel, Tayo
AU - Oddsson, Björn
AU - Pfeffer, Melissa A.
AU - Barsotti, Sara
AU - Bergsson, Baldur
AU - Donovan, Amy
AU - Burton, Mike R.
AU - Aiuppa, Alessandro
AU - Vogfjörð, Kristín S.
AU - Hjorleifsdottir, Vala
AU - Jakobsson, Sigurður
N1 - Publisher Copyright:
Copyright 2016 by the American Association for the Advancement of Science; all rights reserved.
PY - 2016/7/15
Y1 - 2016/7/15
N2 - Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption.We usemultiparameter geophysical and geochemical data to show that the 110-squarekilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, nearexponential decline of both collapse rate and the intensity of the 180-day-long eruption.
AB - Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption.We usemultiparameter geophysical and geochemical data to show that the 110-squarekilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, nearexponential decline of both collapse rate and the intensity of the 180-day-long eruption.
KW - Caldera collapse
KW - Eruption
KW - Lateral Magma Flow
KW - Glacier Dynamics
KW - Bárðarbunga
KW - Öskjugos
KW - Eldgos
KW - Hraunrennsli
KW - Caldera collapse
KW - Eruption
KW - Lateral Magma Flow
KW - Glacier Dynamics
KW - Bárðarbunga
KW - Öskjugos
KW - Eldgos
KW - Hraunrennsli
UR - http://www.scopus.com/inward/record.url?scp=84978402488&partnerID=8YFLogxK
U2 - 10.1126/science.aaf8988
DO - 10.1126/science.aaf8988
M3 - Article
AN - SCOPUS:84978402488
SN - 0036-8075
VL - 353
SP - aaf8988
JO - Science
JF - Science
IS - 6296
M1 - aaf8988
ER -