Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge

Tamsin Cookson, Kirill Kalinin, Helgi Sigurdsson, Julian D. Töpfer, Sergey Alyatkin, Matteo Silva, Wolfgang Langbein, Natalia G. Berloff*, Pavlos G. Lagoudakis

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a large topological charge, termed giant vortices, are notoriously difficult to realise and even when externally imprinted, they are unstable, breaking into many vortices of a single charge. In spite of many theoretical proposals on the formation and stabilisation of giant vortices in ultra-cold atomic Bose-Einstein condensates and other superfluid systems, their experimental realisation remains elusive. Polariton condensates stand out from other superfluid systems due to their particularly strong interparticle interactions combined with their non-equilibrium nature, and as such provide an alternative testbed for the study of vortices. Here, we non-resonantly excite an odd number of polariton condensates at the vertices of a regular polygon and we observe the formation of a stable discrete vortex state with a large topological charge as a consequence of antibonding frustration between nearest neighbouring condensates.

Original languageEnglish
Article number2120
Pages (from-to)2120
JournalNature Communications
Volume12
Issue number1
DOIs
Publication statusPublished - 9 Apr 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Fingerprint

Dive into the research topics of 'Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge'. Together they form a unique fingerprint.

Cite this