Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa

Dean C. Presnall*, Gudmundur H. Gudfinnsson, Michael J. Walter

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

133 Citations (Scopus)


We propose a model for the generation of average MORBs based on phase relations in the CaO-MgO-Al2O3-SiO2-CO2 system at pressures from 3 to 7 GPa and in the CaO-MgO-Al2O3-SiO2-Na2O-FeO (CMASNF) system at pressures from ∼0.9 to 1.5 GPa. The MELT seismic tomography (Forsyth et al., 2000) across the East Pacific Rise shows the largest amount of melt centered at ∼30-km depth and lesser amounts at greater depths. An average mantle adiabat with a model-system potential temperature (Tp) of 1310°C is used that is consistent with this result. In the mantle, additional minor components would lower solidus temperatures ∼50°C, which would lower Tp of the adiabat for average MORBs to ∼1260°C. The model involves generation of carbonatitic melts and melts that are transitional between carbonatite and kimberlite at very small melt fractions (<0.2%) in the low-velocity zone at pressures of ∼2.6 to 7 GPa in the CMAS-CO2 system, roughly the pressure range of the PREM low-velocity zone. These small-volume, low-viscosity melts are mixed with much larger volumes of basaltic melt generated at the plagioclase-spinel lherzolite transition in the pressure range of ∼0.9 to 1.5 GPa. In this model, solidus phase relations in the pressure range of the plagioclase-spinel lherzolite transition strongly, but not totally, control the major-element characteristics of MORBs. Although the plagioclase-spinel lherzolite transition suppresses isentropic decompression melting in the CMAS system, this effect does not occur in the topologically different and petrologically more realistic CMASNF system. On the basis of the absence of plagioclase from most abyssal peridotites, which are the presumed residues of MORB generation, we calculate melt productivity during polybaric fractional melting in the plagioclase-spinel lherzolite transition interval at exhaustion of plagioclase in the residue. In the CMASN system, these calculations indicate that the total melt productivity is ∼24%, which is adequate to produce the oceanic crust. The residual mineral proportions from this calculation closely match those of average abyssal peridotites. Melts generated in the plagioclase-spinel lherzolite transition are compositionally distinct from all MORB glasses, but do not have a significant fractional crystallization trend controlled by olivine alone. They reach the composition field of erupted MORBs mainly by crystallization of both plagioclase and olivine, with initial crystallization of either one of these phases rapidly joined by the other. This is consistent with phenocryst assemblages and experimental studies of the most primitive MORBs, which do not show an olivine-controlled fractionation trend. The model is most robust for the eastern Pacific, where an adiabat with a Tp of ∼1260°C is supported by the MELT seismic data and where the global inverse correlation of (FeO)8 with (Na2O)8 is weak. Average MORBs worldwide also are well modeled. A heterogeneous mantle consisting of peridotite of varying degrees of major-element depletion combined with phase-equilibrium controls in the plagioclase- spinel lherzolite transition interval would produce the form of the global correlations at a constant Tp, which suggests a modest range of Tp along ridges. Phase-composition data for the CMASNF system are presently not adequate for quantitative calculation of absence of picritic glasses in Iceland and the global ridge system suggests an upper bound of ∼1400°C. In contrast to some previous models for MORB generation that emphasize large potential temperature variations in a relatively homogeneous peridotitic mantle, our model emphasizes modest potential temperature variations in a peridotitic mantle that shows varying degrees of heterogeneity. Calculations indicate that melt productivity changes from 0 to 24% for a change in Tp from 1240 to 1260°C, effectively producing a rapid increase to full crustal thickness or decrease to none as ridges appear and disappear.

Original languageEnglish
Pages (from-to)2073-2090
Number of pages18
JournalGeochimica et Cosmochimica Acta
Issue number12
Publication statusPublished - 2002

Bibliographical note

Funding Information:
We are especially pleased to participate in this volume in honor of Hat Yoder, whose early studies laid the framework for subsequent experimental studies on basalt petrogenesis. We thank Hat Yoder, Tony Morse, and the journal reviewers, Tim Grove and Paul Asimow, for penetrating and sometimes withering reviews that led to significant improvements in the manuscript. The assistance of Paul Asimow in developing the comparison of our experimental data with MELTS is especially appreciated. Don Forsyth generously provided an unpublished tomographic image from the MELT experiment and very helpful comments about its interpretation. Presnall thanks Don Anderson for stimulating conversations that helped clarify some of the issues discussed. Financial support was provided by National Science Foundation Grants EAR-9725900 and EAR-0106645 to Presnall. Contribution No. 943, Department of Geosciences, University of Texas at Dallas.


Dive into the research topics of 'Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa'. Together they form a unique fingerprint.

Cite this