Abstract
We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ∼105M⊙ and minimum gas softening of ∼180 pc) within ETHOS to date – plus a CDM counterpart – to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1–0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep James Webb Space Telescope surveys of strongly lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.
Original language | English |
---|---|
Pages (from-to) | 2886-2899 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 477 |
Issue number | 3 |
DOIs | |
Publication status | Published - 28 Mar 2018 |
Other keywords
- Galaxies
- Dark matter
- Vetrarbrautir
- Stjarneðlisfræði