TY - JOUR
T1 - Electrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle
AU - Roy, Denis
AU - Jóhannsson, Erlingur
AU - Bonen, Arend
AU - Marette, André
PY - 1997
Y1 - 1997
N2 - Insulin and contraction independently stimulate glucose transport in skeletal muscle. Whereas insulin activates glucose transport more in muscles composed of type I and IIa fibers, electrical stimulation increases glucose transport at least as much in type IIb fiber-enriched muscles despite the fact that the latter fiber type contains less GLUT-4 glucose transporters. The aim of the present study was to test the hypothesis that a greater GLUT- 4 translocation to the cell surface may underlie the higher contraction- stimulated glucose transport in type IIb myofibers. Leg muscles from rats were stimulated in situ at 100 Hz (200 ms) each 2 s via the sciatic nerve over a period of 20 min while the contralateral leg was kept at rest. Muscle 2-[3H]deoxy-D-glucose uptake (2-DG) was measured in separated red gastrocnemius (RG, type I and IIa fibers) and white gastrocnemius (WG, type IIb fibers) muscles. Resting 2-DG uptake was greater in RG than WG. Electrical stimulation increased 2-DG uptake over resting values similarly in WG and RG. Fractions enriched with either plasma membranes, transverse (T) tubules, triads, or GLUT-4-enriched intracellular membranes were isolated from RG and WG using a recently developed subcellular fractionation procedure. Electrical stimulation similarly increased GLUT-4 protein content in plasma membranes of RG and WG, whereas it stimulated GLUT-4 translocation more (~50%) in T tubules of WG than in RG. GLUT-4 content was not changed in triads of both muscle types. The increments in cell surface GLUT-4 protein levels were paralleled by significant reductions in the amount of the transporter in the intracellular membrane fractions of both muscle types (by 60% in RG and 56% in WG). It is concluded that electrically induced contraction stimulates GLUT-4 translocation more in T tubules of WG than RG. The physiological implications of this finding for glucose uptake by contracting RG and WG muscles is discussed.
AB - Insulin and contraction independently stimulate glucose transport in skeletal muscle. Whereas insulin activates glucose transport more in muscles composed of type I and IIa fibers, electrical stimulation increases glucose transport at least as much in type IIb fiber-enriched muscles despite the fact that the latter fiber type contains less GLUT-4 glucose transporters. The aim of the present study was to test the hypothesis that a greater GLUT- 4 translocation to the cell surface may underlie the higher contraction- stimulated glucose transport in type IIb myofibers. Leg muscles from rats were stimulated in situ at 100 Hz (200 ms) each 2 s via the sciatic nerve over a period of 20 min while the contralateral leg was kept at rest. Muscle 2-[3H]deoxy-D-glucose uptake (2-DG) was measured in separated red gastrocnemius (RG, type I and IIa fibers) and white gastrocnemius (WG, type IIb fibers) muscles. Resting 2-DG uptake was greater in RG than WG. Electrical stimulation increased 2-DG uptake over resting values similarly in WG and RG. Fractions enriched with either plasma membranes, transverse (T) tubules, triads, or GLUT-4-enriched intracellular membranes were isolated from RG and WG using a recently developed subcellular fractionation procedure. Electrical stimulation similarly increased GLUT-4 protein content in plasma membranes of RG and WG, whereas it stimulated GLUT-4 translocation more (~50%) in T tubules of WG than in RG. GLUT-4 content was not changed in triads of both muscle types. The increments in cell surface GLUT-4 protein levels were paralleled by significant reductions in the amount of the transporter in the intracellular membrane fractions of both muscle types (by 60% in RG and 56% in WG). It is concluded that electrically induced contraction stimulates GLUT-4 translocation more in T tubules of WG than RG. The physiological implications of this finding for glucose uptake by contracting RG and WG muscles is discussed.
KW - Contraction
KW - GLUT-1
KW - Plasma membrane
KW - Sciatic nerve
KW - Triad
UR - http://www.scopus.com/inward/record.url?scp=0030724483&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.1997.273.4.e688
DO - 10.1152/ajpendo.1997.273.4.e688
M3 - Article
C2 - 9357796
AN - SCOPUS:0030724483
SN - 0193-1849
VL - 273
SP - E688-E694
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 4 36-4
ER -