Effect of hydrogen adsorption on the magnetic properties of a surface nanocluster of iron

Pavel F. Bessarab*, Valery M. Uzdin, Hannes Jónsson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

The effect of hydrogen adsorption on the magnetic properties of an Fe 3 cluster immersed in a Cu(111) surface has been calculated using density functional theory and the results used to parametrize an Alexander-Anderson model which takes into account the interaction of d electrons with itinerant electrons. A number of adatom configurations containing one to seven H atoms were analyzed. The sequential addition of hydrogen atoms is found to monotonically reduce the total magnetic moment of the cluster with the effect being strongest when the H atoms sit at low-coordinated sites. Decomposition of the charge density indicates a transfer of 0.3 electrons to each of the H atoms from both the Fe atoms and from the copper substrate, irrespective of adsorption site and coverage. The magnetic moment of only the nearest neighbor Fe atoms is reduced, mainly due to increased population of minority spin d states. This can be modeled by increased indirect coupling of d states via the conduction s band in the Alexander-Anderson model.

Original languageEnglish
Article number214407
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume88
Issue number21
DOIs
Publication statusPublished - 10 Dec 2013

Fingerprint

Dive into the research topics of 'Effect of hydrogen adsorption on the magnetic properties of a surface nanocluster of iron'. Together they form a unique fingerprint.

Cite this