Abstract
Non-negative matrix factorization (NMF) has found use in fields such as remote sensing and computer vision where the signals of interest are usually non-negative. Data dimensions in these applications can be huge and traditional algorithms break down due to unachievable memory demands. One is then compelled to consider distributed algorithms. In this paper, we develop for the first time a distributed version of NMF using the alternating direction method of multipliers (ADMM) algorithm and dyadic cyclic descent. The algorithm is compared to well established variants of NMF using simulated data, and is also evaluated using real remote sensing hyperspectral data.
Original language | English |
---|---|
Title of host publication | 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4303-4307 |
Number of pages | 5 |
ISBN (Electronic) | 9781479999880 |
DOIs | |
Publication status | Published - 18 May 2016 |
Event | 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China Duration: 20 Mar 2016 → 25 Mar 2016 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2016-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 |
---|---|
Country/Territory | China |
City | Shanghai |
Period | 20/03/16 → 25/03/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Other keywords
- alternating direction method of multipliers
- distributed signal processing
- dyadic cyclic descent
- Non-negative matrix factorization
- optimization