Determinants of tapeworm species richness in elasmobranch fishes: Untangling environmental and phylogenetic influences

Haseeb S. Randhawa*, Robert Poulin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


Parasite species richness is a fundamental characteristic of host species and varies substantially among host communities. Hypotheses aiming to explain observed patterns of richness are numerous, and none is universal. In this study, we use tapeworm parasites of elasmobranch fishes to examine the phylogenetic and environmental influences on the variation in species richness for this specific system. Tapeworms are the most diverse group of helminths to infect elasmobranchs. Elasmobranchs are cosmopolitan in distribution and their tapeworm parasites are remarkably host specific; therefore, making this an ideal system in which to examine global patterns in species diversity. Here, we 1) quantify the tapeworm richness in elasmobranch fishes, 2) identify the host features correlated with tapeworm richness, and 3) determine whether tapeworm richness follows a latitudinal gradient. The individual and combined effects of host size, factors associated with water temperatures (influenced by latitude and depth), host habitat, and type of elasmobranch (shark or batoid) on measures of species diversity were assessed using general linear models. These analyses included tapeworm host records for 317 different elasmobranch species (124 species were included in our analyses) and were conducted with and without taking into account phylogenetic relationships between host species. Since sharks and batoids differ substantially in body form, analyses were repeated for each host subset. On average, batoids harboured significantly more tapeworm species than shark hosts. Tapeworm richness in sharks was influenced by median depth, whereas no predictor variable included in our models could adequately account for interspecific variation in tapeworm richness in batoid hosts. The taxonomic diversity of tapeworm assemblages of sharks and batoids was influenced by median depth and median latitude, respectively. When the influence of host phylogeny is accounted for, larger hosts harbour a greater tapeworm richness, whereas hosts exploiting wider latitudinal ranges harbour more taxonomically distinct tapeworm assemblages. Species richness and taxonomic diversity of tapeworm assemblages in elasmobranch fishes are influenced by different evolutionary pressures, including host phylogenetic relationships, space constraints and geographical area. Our results suggest that ca 3600 tapeworm species have yet to be described from elasmobranch fishes.

Original languageEnglish
Pages (from-to)866-877
Number of pages12
Issue number5
Publication statusPublished - Oct 2010


Dive into the research topics of 'Determinants of tapeworm species richness in elasmobranch fishes: Untangling environmental and phylogenetic influences'. Together they form a unique fingerprint.

Cite this