Class-Specific Sparse Multiple Kernel Learning for Spectral-Spatial Hyperspectral Image Classification

Tianzhu Liu, Yanfeng Gu, Xiuping Jia, Jón Atli Benediktsson, Jocelyn Chanussot

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)


In recent years, many studies on hyperspectral image classification have shown that using multiple features can effectively improve the classification accuracy. As a very powerful means of learning, multiple kernel learning (MKL) can conveniently be embedded in a variety of characteristics. This paper proposes a class-specific sparse MKL (CS-SMKL) framework to improve the capability of hyperspectral image classification. In terms of the features, extended multiattribute profiles are adopted because it can effectively represent the spatial and spectral information of hyperspectral images. CS-SMKL classifies the hyperspectral images, simultaneously learns class-specific significant features, and selects class-specific weights. Using an L1-norm constraint (i.e., group lasso) as the regularizer, we can enforce the sparsity at the group/feature level and automatically learn a compact feature set for the classification of any two classes. More precisely, our CS-SMKL determines the associated weights of optimal base kernels for any two classes and results in improved classification performances. The advantage of the proposed method is that only the features useful for the classification of any two classes can be retained, which leads to greatly enhanced discriminability. Experiments are conducted on three hyperspectral data sets. The experimental results show that the proposed method achieves better performances for hyperspectral image classification compared with several state-of-the-art algorithms, and the results confirm the capability of the method in selecting the useful features.

Original languageEnglish
Pages (from-to)7351-7365
Number of pages15
JournalIEEE Transactions on Geoscience and Remote Sensing
Issue number12
Publication statusPublished - Dec 2016

Bibliographical note

Funding Information:
This work was supported in part by the National Science Fund for Excellent Young Scholars under Grant 61522107, by the Natural Science Foundation of China under Grant 61371180, by the China Aerospace Science and Technology Corporation-Harbin Institute of Technology Joint Center for Technology Innovation Fund under Grant CASC-HIT15-1C03, and by the Smart Sea Technical Innovation Foundation, CSSC-SERI.

Publisher Copyright:
© 2016 IEEE.

Other keywords

  • Classification
  • extended multiattribute profile (EMAP)
  • group lasso
  • hyperspectral images
  • multiple kernel learning (MKL)


Dive into the research topics of 'Class-Specific Sparse Multiple Kernel Learning for Spectral-Spatial Hyperspectral Image Classification'. Together they form a unique fingerprint.

Cite this