Abstract
This study is a novel attempt in developing of an Artificial neural network (ANN) model integrated with a thermodynamic equilibrium approach for downdraft biomass gasification integrated power generation unit. The objective of the study is to predict the net output power from the systems derived from various kinds of biomass feedstocks under atmospheric pressure and various operating conditions. The input parameters used in the models are elemental analysis compositions (C, O, H, N and S), proximate analysis compositions (moisture, ash, volatile material and fixed carbon) and operating parameters (gasifier temperature and air to fuel ratio). The architecture of the model consisted of one input, one hidden and one output layer. 1032 simulated data from 86 different types of biomasses in various operating conditions were used to train the ANN. The developed ANN shows agreement with simulated data with absolute fraction of variance (R2) higher than 0.999 in the case of product power. Moreover, the relative influence of biomass characteristics and some specific operating parameters on output power are determined. Finally, to have a more detailed assessment, the variations of all input variables with respect to carbon content are compared and analyzed together. The suggested integrated ANN based model can be applied as a very useful tool for optimization and control of the process through the downdraft biomass gasification integrated with power generation unit.
Original language | English |
---|---|
Article number | 118800 |
Journal | Energy |
Volume | 213 |
DOIs | |
Publication status | Published - Dec 2020 |
Other keywords
- Biomass gasification
- Artificial neural network
- Power production
- Downdraft
- Simulation
- Lífmassi
- Lífrænn úrgangur
- Tauganet
- Líkön
- Orkugjafar