Analytical and Numerical Approaches for the Design of Concrete Structural Elements with Internal BFRP Reinforcement

Todor Zhelyazov*, Eythor Thorhallsson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Although basalt fiber-reinforced polymers (BFRPs) have been known for a few decades, new trends such as sustainability and environmental care have provoked intensified research on its structural applications. In construction, BFRPs, as internal reinforcement, have to compete with traditional steel reinforcement products. Because of their high resistance to aggressive environments, BFRPs have emerged as an attractive solution for the infrastructure in coastal zones. In this article, we discuss some aspects of BFRP applications such as flexural reinforcement of concrete beams. The mechanical performances of a BFRP-reinforced beam are illustrated by using a widely accepted model based on the classical beam theory. The elasticity modulus of the BFRP reinforcement is lower than that of structural steel. Therefore, to meet serviceability requirements (e.g., in terms of limitation on the mid-span deflection of a beam), BFRP could be pre-tensioned. The positive effect of pre-tensioning is outlined by finite element analysis. An original numerical procedure involves a constitutive relation for concrete based on damage mechanics. Experimental results previously reported in the literature provide the background for the numerical model procedures. The numerical procedure predicts the mechanical response of the concrete beam with BFRP reinforcement subjected to four-point bending in terms of load-deflection relationship and dominant failure mode.

Original languageEnglish
Article number1497
JournalMaterials
Volume15
Issue number4
DOIs
Publication statusPublished - 17 Feb 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Other keywords

  • BFRP
  • BFRP-reinforced concrete beams
  • Concrete
  • Finite element modeling
  • Pre-tensioning

Fingerprint

Dive into the research topics of 'Analytical and Numerical Approaches for the Design of Concrete Structural Elements with Internal BFRP Reinforcement'. Together they form a unique fingerprint.

Cite this