TY - JOUR
T1 - Accident Count Model Based on Multiyear Cross-Sectional Roadway Data with Serial Correlation
AU - Ulfarsson, Gudmundur F.
AU - Shankar, Venkataraman N.
PY - 2003
Y1 - 2003
N2 - The use of the negative multinomial model to form a predictive model of median crossover accident frequencies with a multiyear panel of cross-sectional roadway data with a roadway section-specific serial correlation across time was explored. The negative multinomial model specification is compared with previous research, which used the same database but which also used negative binomial and random-effects negative binomial count models. If there is no section-specific correlation in the panel, the negative multinomial model becomes equivalent to the negative binomial. The differences in the estimation results between those models show that such a correlation exists in the data. The results show that the negative multinomial significantly outperforms the negative binomial and the random-effects negative binomial in terms of fit, with a statistically significantly higher likelihood at convergence. The signs of the coefficients were similar hi all models; when the signs differed, the negative multinomial model results were more intuitive. Overall, the analysis supports the use of the negative multinomial count model to estimate median crossover accident frequency models that are based on panel data.
AB - The use of the negative multinomial model to form a predictive model of median crossover accident frequencies with a multiyear panel of cross-sectional roadway data with a roadway section-specific serial correlation across time was explored. The negative multinomial model specification is compared with previous research, which used the same database but which also used negative binomial and random-effects negative binomial count models. If there is no section-specific correlation in the panel, the negative multinomial model becomes equivalent to the negative binomial. The differences in the estimation results between those models show that such a correlation exists in the data. The results show that the negative multinomial significantly outperforms the negative binomial and the random-effects negative binomial in terms of fit, with a statistically significantly higher likelihood at convergence. The signs of the coefficients were similar hi all models; when the signs differed, the negative multinomial model results were more intuitive. Overall, the analysis supports the use of the negative multinomial count model to estimate median crossover accident frequency models that are based on panel data.
UR - http://www.scopus.com/inward/record.url?scp=1842532538&partnerID=8YFLogxK
U2 - 10.3141/1840-22
DO - 10.3141/1840-22
M3 - Article
AN - SCOPUS:1842532538
SN - 0361-1981
SP - 193
EP - 197
JO - Transportation Research Record
JF - Transportation Research Record
IS - 1840
ER -