TY - JOUR
T1 - (2+1) REMPI spectra of =0 states of the hydrogen halides
T2 - Spectroscopy, perturbations and excitation mechanisms
AU - Kvaran, Ágúst
AU - Logadóttir, Áshildur
AU - Wang, Huasheng
PY - 1998
Y1 - 1998
N2 - (2+1) REMPI spectra of HX (X=Cl, Br and I) have been recorded and analyzed by simulation calculations to derive rotational constants, band origins and isotope shift values for a number of vibrational bands of =0 states. Our data for HCl compare nicely with those derived by Green et al. by conventional analysis methods [D. S. Green et al., J. Mol. Spectrosc. 150, 303, 354, 388 (1991); D. S. Green and S. C. Wallace, J. Chem. Phys. 96, 5857 (1992)]. New spectroscopic parameters were derived for eight vibrational bands which are assigned to the V(1Σ+) state, for v′=4 of the E(1Σ+) state, as well as for five new bands in HBr. New spectroscopic parameters were derived for four vibrational bands which are assigned to the V state and for v′=1 of the E state in HI. Anomalies observed in energy level spacings, rotational parameters and isotope shift values are interpreted as being largely due to homogeneous interactions between the V and the E states. It is argued that the interaction causes a compression of rovibrational levels in the E state manifold but an expansion of levels in the V state manifold, something which might be expected for a Rydberg to ion-pair interaction. Variations observed in the intensity ratio of O and S line series to Q line series in vibrational bands of the E and V states for HCl and HBr are discussed and mechanisms of two-photon excitation processes are proposed.
AB - (2+1) REMPI spectra of HX (X=Cl, Br and I) have been recorded and analyzed by simulation calculations to derive rotational constants, band origins and isotope shift values for a number of vibrational bands of =0 states. Our data for HCl compare nicely with those derived by Green et al. by conventional analysis methods [D. S. Green et al., J. Mol. Spectrosc. 150, 303, 354, 388 (1991); D. S. Green and S. C. Wallace, J. Chem. Phys. 96, 5857 (1992)]. New spectroscopic parameters were derived for eight vibrational bands which are assigned to the V(1Σ+) state, for v′=4 of the E(1Σ+) state, as well as for five new bands in HBr. New spectroscopic parameters were derived for four vibrational bands which are assigned to the V state and for v′=1 of the E state in HI. Anomalies observed in energy level spacings, rotational parameters and isotope shift values are interpreted as being largely due to homogeneous interactions between the V and the E states. It is argued that the interaction causes a compression of rovibrational levels in the E state manifold but an expansion of levels in the V state manifold, something which might be expected for a Rydberg to ion-pair interaction. Variations observed in the intensity ratio of O and S line series to Q line series in vibrational bands of the E and V states for HCl and HBr are discussed and mechanisms of two-photon excitation processes are proposed.
UR - http://www.scopus.com/inward/record.url?scp=0032497459&partnerID=8YFLogxK
U2 - 10.1063/1.477208
DO - 10.1063/1.477208
M3 - Article
AN - SCOPUS:0032497459
VL - 109
SP - 5856
EP - 5867
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
SN - 0021-9606
IS - 14
ER -